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Introduction
Diabetes mellitus (DM) is one of the major epidemic disorders of 

the current century [1,2]. It is a group of metabolic disorders leading 
to defects in insulin secretion and action of insulin or both. Diabetes 
is influenced by a combination of both hereditary and environmental 
factors [3]. In the human body, blood glucose levels are controlled by 
a complex interaction of multiple chemicals and hormones, including 
insulin and glucagon. Insulin is one of the important peptide hormones 
produced from the beta cells of the pancreas that allows blood glucose 
to enter various cells of the body where it is oxidized to yield energy 
needed by the muscles and tissues to function [4]. Glucagon is also 
a peptide hormone, secreted from the alpha cells of the pancreas, 
which causes a rise in the blood glucose concentration. The effect of 
glucagon is opposite to that of insulin, which lowers the blood glucose 
concentration.

The global prevalence of DM in adults is increasing at an alarming 
rate. According to the recent update by the 8th edition of the diabetes 
mellitus Atlas, it was reported that there are 425 million adults with 
DM in the world and it is estimated that there will be 693 million people 
with DM by the year 2045 [5]. This equates to approximately three new 
cases in every 10 seconds or almost 10 million per year. Diabetes caused 
5.1 million deaths in 2013 and every six seconds a person dies from 
diabetes. Diabetes is rampant in Indian subcontinent. India is the 2nd 
topmost country having the highest number of people with diabetes. 
The lack of adequate control in the consistently high level of glucose 
leads to the appearance of serious vascular complications.

Vascular complications of diabetes
Macrovascular and microvascular complications are the chronic 

vascular complications of diabetes, which are the major causes of 
morbidity and mortality (Figure 1). Diabetes, due to its increased 
prevalence has become the principal cause of blindness and end 
stage renal disease. About 30-45% of all diabetic subjects suffer from 
microvascular complications. Among microvascular complications, 

*Correspondence to: Diwesh Chawla, Central Research Laboratory, Multi-
disciplinary Research Unit, India, E-mail: diweshchawla@yahoo.co.in

Key words: hyperglycemia, advanced glycation end products, vascular 
complications

Received: August 07, 2019; Accepted: September 19, 2019; Published: 
September 23, 2019

Abstract
Diabetes Mellitus (DM) is one of the major health problems of the current century. It is associated with accelerating advanced glycation end products (AGEs) 
formation and accumulation in the circulating blood and various tissues. AGEs, also accelerate the expression of its receptor i.e. receptor for AGEs (RAGE) and plays 
a pivotal role in the development and progression of diabetic vascular complications through various mechanisms. Hyperglycemia mediated reactive oxygen species 
generation can induce oxidative stress through four major mechanisms including the polyol pathway, AGEs formation, activation of protein kinase c isoforms and 
the hexosamine pathway. Therapeutic interventions may improve the clinical course of patients having diabetes and its associated vascular complications by reducing 
the AGEs levels. This review summarizes the recent update on the role of AGE-RAGE mediated mechanisms in the development of diabetic vascular complications.

neuropathy, retinopathy and nephropathy were observed. The 
characteristic macrovascular complications include cardiovascular 
diseases. Patients with diabetes are at two to four times increased risk of 
coronary heart disease, cardiovascular disease and related deaths than 
those in the general population. Patients with diabetes are at four times 

Figure 1. The major diabetic vascular complication
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higher risk of developing peripheral vascular disease (PVD) [6] Each of 
these organ specific vascular complications has its own unique, clinical 
and histologic features, but all are common with increasing duration 
of hyperglycemia and are driven by its downstream cellular signaling 
pathways [7].

The Diabetes Control and Complications Trial (DCCT) and 
United Kingdom Prospective Diabetes Study Trial (UKPDS) have 
clearly demonstrated the vital importance of intensive glycemic 
control in preventing the progression of diabetic complications [8,9]. 
Hyperglycemia inflicts cumulative long-term structural and functional 
changes in important macromolecules through advanced glycation 
end products (AGEs). Hyperglycemia induces a variety of metabolic 
changes, which includes activation of polyol pathway, activation of the 
diacylglycerol-protein kinase c, and increased oxidative stress. In this 
review, we summarize the recent updates on AGEs and the role of AGE-
RAGE interaction-mediated various pathways which lead to diabetic 
vascular complications.

Hyperglycemia mediated ROS generation
Oxidative stress (OS) is defined as an imbalance between the 

reactive oxygen species (ROS) generation and the body’s antioxidant 
defense system [10-12]. Various studies have evidenced that OS plays an 
important role in the pathogenesis of a wide range of human disorders 
such as diabetes, cancer, cardiovascular disorders, kidney diseases 
and neurodegenerative diseases [13-16]. Also the most important 
pathogenic role of OS in the initiation and development of diabetes 
associated complications has been determined. Free radical generation 
in hyperglycemic conditions may lead to OS in β-cells of the pancreas, 
which causes β-cell dysfunction and other long term complications of 
diabetes because of insulin secretion and /or its function impairment 
[17-20].

Under the normal physiological conditions, ROS generation 
may help in cell defense, hormone synthesis, signal transduction, 
transcription factor regulation and gene expression. While under 
pathological conditions; inflammation, tissue damage, fibrosis and 
β-cell death may occur [21,22]. There are four major mechanisms 
involved in the increased intracellular OS as a result of hyperglycemia, 
which includes the polyol pathway, advanced glycation end product 
formation, protein kinase c–diacyl glycerol pathway and hexosamine 
pathway (Figure 2). It has been reported that all of these pathways 
are activated by mitochondrial ROS overproduction. The effects of 
ROS generation can be modified by enzymatic or non-enzymatic 
antioxidants. Enzymatic antioxidant includes catalase, superoxide 
dismutase, nitric oxide synthase, glutathione peroxidase, glutathione-
s-transferase and nicotinamide adenine dinucleotide phosphate 
(NADPH) oxidase. Non- enzymatic antioxidant includes vitamins, 
minerals, polyphenols, carotenoids and some other molecules [23,24].

The polyol pathway mainly focuses on the enzyme aldose 
reductase. Normally aldose reductase reduces toxic aldehydes in 
the cells to inactive alcohols, but under hyperglycemic condition, 
it utilizes NADPH and converts excessive intracellular glucose into 
the forms of sugar alcohols [15]. In healthier individuals, this pathway 
utilizes a very small fraction of the total glucose while in diabetic 
patients aldose reductase activated and induces increased conversion of 
glucose to sorbitol. After then, sorbitol is oxidized to fructose by enzyme 
sorbitol dehydrogenase with NAD+ as a cofactor [18]. Consumption of 
NADPH reduces glutathione reductase (GSH) activity as GSH is well 
known important scavenger of ROS [18,20,21]. Finally the process 
induces ROS generation and exacerbates intracellular OS.

Hyperglycemia also induces overproduction of both the 
intracellular and extracellular AGEs [1]. Advanced glycation 
end product formation occurs as the result of glyoxal oxidation, 
3-deoxyglucosome formation and fragmentation of glyceraldehyde-
3-phosphate into methyl glyoxal [15]. Cellular damage may occur 
due to intracellular production of AGE precursors through mainly 
three general mechanisms. Firstly, the functional intracellular 
proteins modification by AGEs may occur. After then abnormal 
interaction of extracellular matrix compounds which were modified 
by AGEs precursors with other matrix components and receptors 
such as integrin is observed. At last, finally the plasma proteins are 
modified by AGEs precursors binding to cell surface receptors such as 
receptor for AGEs (RAGE) or macrophage scavenger receptor [18,21]. 
This AGE-RAGE interaction may contribute to OS via induction of 
mitochondrial superoxide and cytosolic NADPH oxidase dependent 
mechanism, which activates multiple signals such as p21RAS, NF-
kB, MAP kinase, TGF-β, vascular adhesion molecules, etc. This 
transcribes the number of pro-inflammatory genes and subsequently 
elicits vascular inflammation, over expression of endothelial growth 
factor, impaired fibrinolytic affinity, platelet aggregation, angiogenesis 
and thrombosis, thereby playing a central role in the pathogenesis of 
vascular complications in diabetes by enhancing the OS development 
[25-28]. These observations suggest that in diabetes, the increased 
AGEs production might alter glucose metabolism through direct attack 
on pancreatic insulin producing cells.

Protein kinase C (PKC) consists of at least eleven isoforms 
in mammalian tissues. Increased activation of PKC isoforms is 
the third most important pathway which induces tissue injury 
through hyperglycemia mediated ROS. Increased ROS generation 
inhibits activity of glycolytic enzyme glyceraldehydes-3-phosphate 
dehydrogenase, which leads to increase the level of diacyl glycerol 
(DAG) precursors [15]. Tissue phosphate also enhances the de novo 
synthesis of DAG from glucose. AGE- RAGE interaction also increases 
the activity of PKC isoforms. Hyperglycemia induced PKC activation 
may lead to over expression of plasminogen activator inhibitor-1 (PAI-
1) and activation of NF-kB [22]. This may lead to vascular damage 
via inflammation; increase the permeability of basement membrane 
thickening, angiogenesis and thrombotic vascular occlusion.

Under hyperglycemic condition, when the glucose level is higher 
inside the cell, most of the glucose is metabolized through glycolysis 
to glucose-6-phosphate, then to fructose-6-phosphate. Increasing the 
flux of fructose-6-phosphate into the hexosamine pathway may also 

Figure 2. Hyperglycemia-mediated pathways
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contribute to pathogenesis of diabetic vascular complications [15]. 
Fructose-6-phosphate is diverted from glycolysis to provide glutamine 
fructose-6-phosphate aminotransferase (GFAT). After the conversion 
of fructose-6- phosphate to glucosamine-6-phosphate by GFAT, it is 
converted into UDP-N-acetyl glucosamine. It has been shown that 
hyperglycemia causes four folds increase in UDP-NAG, which induces 
hyperglycemia mediated activation of the PAI-1 and TGF-β1 [19,21]. 
Under normal conditions, very small amount of glucose is metabolized 
through this pathway.

Therefore, it was believed that under hyperglycemic condition, 
mitochondria derived, OS leads to AGEs formation, DAG synthesis 
accelerated, PKC activation, sorbitol or fructose accumulation in 
the cells as a result of polyol pathway activation. These hypotheses 
suggest that hyperglycemia mediated OS play an important role in the 
pathogenesis of vascular disorders.

Biochemistry of advanced glycation end products
Hyperglycemia accelerates non-enzymatic reaction between the 

free amino groups of proteins and carbonyl groups of reducing sugars 
or other carbonyl compounds leading to enhanced formation of AGEs, 
also known as the Maillard reaction [25,26]. Advanced glycation 
end product formation is a complicated molecular process involving 
multistep reaction. A reducing sugar, such as glucose reacts non-
enzymatically with the free amino group of protein to form an unstable 
compound, the Schiff base which undergoes a rearrangement reaction 
to form a more stable product known as Amadori product [27,28]. The 
Amadori adducts then very slowly undergo irreversible dehydration 
and condensation reactions leads to the formation of AGEs, which is 
yellowish brown material with the particular fluorescence. Advanced 
glycation end products are not produced only from glucose, but also 
from dicarbonyl compounds produced from auto-oxidation and the 
degradation products of glucose such as glyoxal, methylglyoxal and 
3-deoxyglucosone or α-hydroxy aldehydes such as glyceraldehydes and 
glycoaldehyde. In addition, AGEs can also act as cross-linkers between 
proteins, resulting in the production of proteins-resistant aggregates 
[29].

Under chronic hyperglycemic condition, AGEs are actively 
produced and accumulate in the circulating blood and various tissues, 
resulting in vascular complications in diabetes. Furthermore, humans 
are also exposed to exogenous AGEs including tobacco, smoke, and diet. 
Food processing methods, such as prolonged heating and microwave 
cooking, can also accelerate the AGEs formation. As discussed earlier, 
the AGEs formation reaction also referred as browning reaction, this 
brown color change of food can be a measure of their AGE content. Over 
a dozen AGEs have been detected in tissues and can be divided into three 
categories: 1. Fluorescent cross-linking AGEs such as pentosidine and 
crossline. 2. Non-fluorescent cross-linking AGEs such as imidazolium 
dilysine cross-links, alkyl formyl glycosyl pyrrole (AFGP) cross-links 
and arginine-lysine imidazole (ALI) cross-links. 3. Non-cross- linking 
AGEs such as pyrraline and N-carboxymethyllysine (CML) [30]. The 
serum AGEs level was determined spectrofluorometrically at emission 
maximum (440 nm) upon excitation at 350 nm [26]. Briefly, serum 
was diluted 1:50 with phosphate buffer saline (PBS) (pH=7.4) and 
fluorescence intensity was expressed in arbitrary units (AU). Total 
serum AGEs were also determined by ELISA using commercial kits. 
Previously, we have reported that higher levels of circulating AGEs 
were observed in diabetic patients having vascular complications 
indicating that higher the serum AGEs level, higher the likelihood 
of development of vascular complication of diabetes [31-33]. Earlier 

gradual increase in serum AGEs-level have been reported with the 
severity of atherosclerosis in diabetic patients [34,35]. Kalusova et al 
determined AGEs spectrofluorometrically and found AGEs were about 
23% higher in diabetic patients compared to healthy individuals [36]. 
In recent studies, AGEs level has been suggested to act as a predictor of 
CVD mortality and diabetic nephropathy [37-41].

Recent studies have evidenced that AGEs may be a key factor in the 
development of metabolic memory in diabetic vascular complications, 
because AGEs are produced and accumulated irreversibly in the body, 
depending on the degree of blood sugar regulation and duration 
[42,43]. AGEs interact with two main types of cell surface receptors viz, 
scavenger receptors, which remove and degrade AGEs and the one is 
receptor for AGEs (RAGE), which triggers specific cellular signaling 
responses on AGE binding.

AGE-RAGE interaction-mediated pathways
RAGE is one of the best characterized receptor which is responsible 

for AGEs related diabetic vascular complications, leads to activating 
the stress response leading to inflammation and cellular dysfunction 
[44-46]. RAGE is a 45kD transmembrane receptor of immunoglobin 
superfamily composed of 404 amino acid. It binds to many ligands 
apart from AGEs, such as high mobility group proteins B1, S100 
calcium binding proteins including calgranulin, amyloid β protein 
and amphotericin [47-51]. Apart from the full length, RAGE also 
available as soluble circulating isoform including sRAGE1/2/3, 
esRAGE (endogeneous soluble RAGE) and hRAGEsec (human RAGE 
secreted). A number of mechanisms have been reported that lead to 
the production of soluble proteins, alternative splicing of the mRNA 
to remove the transmembrane domain and the proteolytical cleavage 
from the cell surface. Various studies of RAGE have shown that sRAGE 
can be formed by both alternative splicing and proteolytic cleavage 
[52-54]. AGE-RAGE interaction activates signals through TGF-β, NF-
kB, MAP kinase and NADPH oxidases, which induces the expression 
of E-selectin, vascular adhesion molecule-1, VEGF and various 
pro- inflammatory cytokines such as IL-1β, IL-6 and TNF-α (Figure 
3). Under hyperglycemic conditions, activation of these signaling 
pathways is increased in vascular smooth muscle cells, leads to vascular 
fibrosis, calcification inflammation, prothrombotic effects and vascular 
damage processes like diabetic nephropathy, neuropathy, retinopathy 
and cardiovascular diseases. AGE-RAGE interaction mediated OS not 
only responsible for vascular disorders by activating renin angiotensin 
system (RAS) but also aggravate organ dysfunction, because RAS 
activation causes NADPH oxidase-mediated OS that may enhance 
RAGE expression and AGEs formation. In endothelial cells, AGE-
RAGE interaction exacerbates the expression of p22phox and gp91phox, 
which are the main components of NADPH oxidase, which promotes 
the production of ROS by activating the cell membrane transport of 
Rac family small GTPase1 (Rac1) to cause endothelial cell dysfunction 
[55-57]. Therefore, targeting the AGE-RAGE interaction has been 
considered as a potential therapeutic strategy to prevent or reduce 
vascular complications in diabetes.

Therapeutic intervention of AGEs
Inhibition of AGEs formation and attenuating the AGE-mediated 

effects may be considered as ideal candidates for pharmaceutical 
intervention in the amelioration of diabetic vascular complications. 
Therapies against the AGEs mediated effect can through diverse 
pathways, like inhibiting the production of Amadori products, 
decreasing AGE-RAGE interaction, detoxifying dicarbonyl 
intermediates and interrupting biochemical pathways that impact on 
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AGEs level. Several drugs are known to modulate AGEs; few of them 
with their therapeutic effects were shown in Table 1.

Conclusion
There is an increase in the level of AGEs formation under 

hyperglycemic conditions. These AGEs formation and accumulation 
may be one of the contributing factors in the development of diabetic 
vascular complications. The possibility of reducing glycation of protein 
or circulating AGEs or targeting AGE-RAGE mediated mechanisms 

may be an approachable target of delaying or preventing the onset of 
diabetic complications. Various compounds are under investigation 
for their possible therapeutic intervention. Finally, the use of AGEs 
as biomarkers/predictors of diabetic complications may be helpful to 
reduce health problems in diabetic patients.
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